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ABSTRACT 

This thesis describes the creation and testing of a lightweight, interpretable machine-learning 

framework for anomaly detection in the VAWT-X vertical-axis wind turbine at Flinders University. The 

project aims to improve condition monitoring and lay the groundwork for predictive maintenance and 

eventual digital twin integration in small-scale renewable energy systems. 

The research was conducted in two stages: offline model training and real-time deployment. Sensor 

data (torque, RPM, current, power, and vibration) were obtained under both normal and induced-

fault circumstances. Features were generated using rolling-window averaging and z-score 

normalization, with residual vibration features supplied by a Random Forest regressor. Five Logistic 

Regression classifiers were designed to detect electrical, aerodynamic, vibration, power shortfall, 

and RPM sensor defects. To ensure alert stability, the probability outputs were filtered using static 

thresholds and a three-of-five hysteresis rule.  

Offline testing showed high classification accuracy, with the Power Deficit detector earning an F1 

score more than 0.9, proving the viability of the suggested approach. The Power Deficit detector 

successfully identified thirty-seven separate load variation events during the real-time testing, which 

was conducted using a MQTT-based data stream, demonstrating live inference capacity. Other 

detectors remained inactive due to data alignment and scaling issues, emphasizing the significance 

of schema verification and adaptive calibration in operational settings.  

Although the initial project scope included complete digital twin integration via the XMPro platform, 

limited turbine readiness and data availability prompted a shift toward model creation and real-time 

testing. This move enabled more in-depth investigation of anomaly detection logic, as well as the 

successful demonstration of an autonomous edge-deployable maintenance architecture.  

The study indicates that interpretable, low-complexity models can efficiently detect early turbine 

failures without using cloud computing or black-box techniques. The findings lay a solid platform for 

future integration into digital twin systems and promote intelligent predictive maintenance in 

distributed renewable energy applications. 
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CHAPTER 1: INTRODUCTION 

1.1 Background and Context 

The growing global demand for renewable energy has sparked the interest in solutions to make 

small-scale wind turbines more efficient and more reliable. Predictive maintenance is a prominent 

part of this objective, as it allows operators to find and fix problems before they cause downtime or 

mechanical failure. Machine learning is increasingly being used in modern wind turbine monitoring 

systems to make sense of sensor data and find problems in real time. However, most of the research 

and commercial uses right now are focused on big horizontal-axis wind turbines. This leaves a gap 

in knowledge and tools for smaller vertical-axis turbines, which have different aerodynamic and 

structural behaviours.   

The VAWT-X vertical-axis wind turbine at Flinders University serves as a testing environment for 

developing small-scale predictive maintenance models. VAWTs, being mechanically simpler than 

horizontal-axis turbines and can operate in all directions, make them ideal for scattered or urban 

deployments. However, their non-stationary vibration patterns, varied torque behaviour, and distinct 

aerodynamic responses provide obstacles for condition monitoring. This study solves these issues 

by creating a lightweight anomaly detection framework tailored for the VAWT-X system. 

 

1.2 Project Aim and Objectives 

The primary aim of this project is to create and test a machine-learning framework for identifying 

mechanical, electrical, and aerodynamic anomalies in the VAWT-X flinders turbine. The technology 

is designed to function in real time with and serve as a platform for integration into a digital twin 

environment. 

The main project objectives are as follows: 

1. Gather datasets consisting of various baseline/anomalous states, preprocess and prepare 

this data for training. 

2. Train and evaluate interpretable machine learning models that can detect various faults from 

the limited datasets. 

3. Develop a real-time deployment pipeline that utilizes MQTT for live inference and alarm 

generation. 

4. Assess model performance using both offline validation and live testing, including 

dependability, latency, and accuracy.  

5. Identify limits and develop design recommendations for future digital twin integration. 
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1.3 Project Scope and Evolution 

The project's initial goal was to produce a fully fleshed digital twin and predictive maintenance system 

for the VAWT-X turbine using the XMPro platform. Early in the development process, it became clear 

that turbine readiness and insufficient testing data would make this scope unachievable given the 

project timespan. Due to this, the project’s focus was narrowed down to largely focus on the 

development of the anomaly detection system, with digital twin integration set as a future goal.  

This scope shift necessitated a thorough overhaul of the project strategy and methods. Early 

literature and design work focused on digital twin architecture were changed to allow for a more 

technical examination of model training, deployment, and real system performance. Although this 

change restricted the scope of deliverables, it allowed for more technical validation of the suggested 

machine-learning approach. The resulting architecture is a basic stage of the bigger digital twin idea, 

which will continue to be developed upon after this project. 

 

1.4 Research Significance 

This experiment demonstrates that simple, transparent models can be used to discover faults in an 

accurate and explainable manner, rather than complicated black-box methods. The interpretability 

of Logistic Regression enables turbine operators to comprehend which variables contribute to 

detected abnormalities, hence increasing trust in the system's choices. The employment of a 

Random Forest regressor to create residual vibration characteristics improves sensitivity to 

mechanical imbalance while being computationally efficient.  

The creation of this framework contributes to ongoing research in small-scale renewable energy 

monitoring by offering a deployable, edge-compatible solution. It demonstrates how academic 

research in anomaly detection can be converted into a working system that can be integrated into 

larger industrial monitoring structures such as digital twins.  

 

1.5 Thesis Structure 

The remainder of this thesis is structured as follows: 

• Chapter 2: Reviews literature on predictive maintenance, machine learning for anomaly 

detection, and condition monitoring of vertical-axis wind turbines. 

• Chapter 3: Discusses the methodology used to design, train, and implement the anomaly 

detection framework. 

• Chapter 4:  Presents the results of both offline and real-time evaluations. 
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• Chapter 5:  Discusses the results in relation to the project’s objectives and reflects on its 

challenges and implications. 

• Chapter 6:  Concludes the thesis and provides recommendations for future work, including 

full digital twin integration. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Machine Learning for Wind Turbine Fault Detection  

Machine learning (ML) has altered how defects in wind turbines are found, moving away from 

traditional rule-based Supervisory Control and Data Acquisition (SCADA) monitoring and toward 

predictive, data-driven analysis. Early systems used fixed thresholds for factors including torque, 

temperature, and rotational speed, triggering alarms when values exceeded predefined limitations 

(Gigoni et al., 2019). Although simple to implement, these algorithms overlooked nonlinear 

interactions between turbine variables, resulting in false alarms or missing early problems (Zhang, 

Hu, & Yang, 2022). 

2.1.1 Logistic Regression 

Logistic Regression (LR) is still a popular baseline for condition monitoring because of its simplicity 

and transparency.  It estimates fault likelihood by assigning interpretable coefficients to quantifiable 

variables like current, torque, and wind speed (Ng & Lim, 2022).  Recent reviews highlight Logistic 

Regression as a transparent baseline for small or moderately sized SCADA datasets, though 

reported accuracies vary widely depending on data quality and feature selection (Nejad Alagha et 

al., 2025). However, LR's linear structure limits its capacity to capture nonlinear dynamics, making it 

less suitable for complicated fault interactions (Mohapatro et al., 2025). 

2.1.2 Random Forest and Ensemble Learning 

Random Forest (RF) and ensemble learning techniques address this limitation by combining 

numerous decision trees to describe nonlinear relationships and handle noisy input. Transfer-

learning approaches, such as TrAdaBoost, have been proven to increase cross-turbine fault 

classification accuracy by adjusting information between turbines operating under different 

conditions (Chen et al., 2021). RF's variable importance measures also aid in identifying critical fault 

predictors, allowing for more accurate physical interpretation of model results (Pedro & Gonzalo, 

2021). Hybrid frameworks that combine RF and deep models have improved performance by 

employing RF for coarse classification and neural networks for temporal refinement (Allal et al., 

2024). 

2.1.3 Isolation Forest and Unsupervised Anomaly Detection 

Isolation Forest (IF) is an unsupervised method that is appropriate for settings with few labelled 

samples. It isolates anomalies using recursive data partitioning, making it ideal for finding unusual 

or previously unknown problems (McKinnon et al, 2021).  While IF may effectively identify outliers in 

dynamic situations, it is still sensitive to parameter scaling and lacks interpretability when compared 

to supervised models. 



 

5 

2.1.4 Deep Learning and Temporal Modelling 

Deep learning, particularly with LSTM architectures, allows for the modelling of time-dependent 

behaviour across various sensor systems. Zhang et al. (2022) used an LSTM-based model to 

capture temporal relationships within SCADA signals, achieving strong fault-diagnosis performance. 

Despite their accuracy, such networks are computationally expensive and frequently inappropriate 

for small-scale or embedded installations that demand transparency (Ng & Lim, 2022). 

2.1.5 Comparative Evaluation 

Hybrid frameworks that combine vibration signal feature engineering with machine-learning 

classifiers increase fault sensitivity and diagnostic accuracy in drivetrain applications (Jamil et al., 

2025). These methods combine physical signal analysis and data-driven learning to achieve a 

balance of accuracy and interpretability. These findings direct the ongoing research toward 

lightweight, explainable models that can operate successfully within the data limits of small-scale 

turbines. 

 

2.2 Machine Learning Models in Vertical-Axis Wind Turbine (VAWT) 
Applications 

While machine learning has become a cornerstone of fault detection in horizontal-axis wind turbines 

(HAWTs), its application to vertical-axis wind turbines (VAWTs) is still limited.  The aerodynamic, 

structural, and operational variances across different turbine types make it difficult to generalize 

existing diagnostic tools. HAWT drivetrain experiments have underlined the necessity of vibration 

and torque signal preprocessing for reliable defect detection (Jamil et al., 2025). As a result, 

algorithms created for HAWTs frequently underperform when applied to VAWT data without 

considerable feature engineering and retraining.  

Early VAWT fault detection research was mostly focused on vibration-based or threshold-driven 

monitoring systems. Monitoring systems based on fixed thresholds often failed to differentiate normal 

operating variability from early signs of component degradation (Gigoni et al., 2019; Moghaddass & 

Rudin, 2015). The use of machine learning models dramatically enhanced detection accuracy by 

incorporating multi-sensor data such as torque, current, and wind speed.  Logistic Regression 

remains a popular and interpretable baseline for fault classification in small datasets (Alagha et al., 

2025). 

Recently, researchers have investigated hybrid and deep learning methods for dealing with the 

temporal and nonlinear nature of VAWT data. Long Short-Term Memory (LSTM) architectures and 

convolutional neural networks (CNNs) have demonstrated promising results in detecting early 

electrical and aerodynamic problems (Wang et al., 2025).  Feature-level signal processing, such as 
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empirical mode decomposition and wavelet analysis, improves the sensitivity of machine learning 

classifiers (Jamil et al., 2025).  Transfer learning techniques have also evolved as a tool for adapting 

pretrained models from large HAWT datasets to smaller VAWT contexts, eliminating the need for 

considerable local training data (Chen et al., 2020).  

Recent experiments have expanded fault diagnosis to structural components like turbine blades. 

Esquivel-Sancho et al. (2025) used finite-element simulation and modal testing data to detect 

fractures and delamination in 3D-printed scaled wind turbine blades. The combination of vibration-

mode data with machine-learning classifiers resulted in accurate distinction of healthy and damaged 

blades, demonstrating the potential of AI-assisted structural health monitoring. 

Despite these advancements, difficulties remain. Environmental noise, sparse datasets, and 

aerodynamic variability continue to impede accurate real-time performance (Moshtaghi et al., 2025; 

Ng & Lim, 2022). As a result, lightweight and interpretable models like Logistic Regression and 

Random Forest remain the most useful for embedded turbine diagnostics.  These techniques strike 

a balance between detection accuracy, interpretability, and computational simplicity, reflecting the 

continued attention on optimizing machine learning algorithms through hyperparameter tuning to 

obtain high accuracy and robustness on turbine fault datasets (Mohapatro et al., 2025; Alagha et al., 

2025). 

 

2.3 Challenges, Gaps & Future Research Considerations 

While machine learning algorithms have produced outstanding results in wind turbine defect 

detection, several persisting obstacles prevent their widespread use for small-scale vertical-axis 

wind turbines (VAWTs). The most pressing concerns include data scarcity, limited model 

transferability, and the necessity for interpretable algorithms that can work in real time (Alagha et al., 

2025; Ng & Lim, 2022). 

2.3.1 Data Availability and Quality 

High-quality, labelled data are required for accurate ML model training, but such datasets are 

uncommon for VAWTs. Most publicly available turbine data originate from big horizontal-axis 

systems (Gigoni et al., 2019; Chen et al., 2020). Small-scale systems frequently rely on brief 

laboratory experiments or synthetic fault injections, limiting model generality. Furthermore, signal 

noise and missing data generated by turbulence or sensor drift obscure fault details and weaken 

model resilience.  To address these issues, researchers have proposed data augmentation and 

adaptive signal decomposition techniques, such as wavelet filtering and empirical mode 

decomposition, which preserve transient fault characteristics while mitigating noise (Wang et al., 
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2025; Moshtaghi et al., 2025). These tactics increase data diversity and model stability under 

dynamic situations. 

2.3.2 Model Transferability and Generalisation 

Even well-trained models frequently fail when applied to new turbines or changing environmental 

circumstances. Structural variances, wind regime changes, and sensor discrepancies all affect data 

distributions, highlighting that drivetrain models often generalise poorly when applied to different 

turbines without additional tuning (Jamil et al., 2025). Transfer learning and domain adaption 

approaches provide partial solutions by fine-tuning pretrained models on smaller, local datasets 

(Chen et al., 2020). Combining physical turbine equations with data-driven models enhances 

generalization by incorporating domain information into the learning process (Pedro & Gonzalo, 

2021). Hybrid physical-data models are as such regarded as an important path for improving 

dependability across various turbine configurations. 

2.3.3 Explainability and Integration into Operations 

Model transparency is still critical for industrial implementation. Operators want models that not only 

predict problems but also explain which sensor features affected their predictions.  While algorithms 

like Logistic Regression and Random Forest produce interpretable results, deep learning techniques 

like LSTMs are sometimes viewed as opaque. Explainable AI (XAI) techniques, such as Digital Twins 

(DT), have been integrated into turbine diagnostics to attribute forecasts to key variables, hence 

enhancing trust and utility (Nejad Alagha et al., 2025). 

2.3.4 Future Research Directions 

These challenges underscore the need for research on hybrid, interpretable, and edge-compatible 

machine learning systems that can work successfully with limited data. Creating open-access VAWT 

datasets, using physics-based reasoning, and building models that balance accuracy with   

explainability represents the next significant step toward providing comprehensive predictive 

maintenance for distributed wind energy assets. 

 

2.4 Summary of Reviewed Literature 

The reviewed study shows that machine learning has become an essential component of current 

wind turbine status monitoring. ML models outperform traditional threshold-based methods in 

recognizing complicated, multidimensional relationships within turbine data and identifying early-

stage problems. Logistic Regression, Random Forest, Isolation Forest, and Long Short-Term 

Memory (LSTM) networks have all demonstrated excellent diagnostic performance in a variety of 

turbine systems (Nejad Alagha et al., 2025; Wang et al., 2025). Among these, Logistic Regression 
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and Random Forest are especially useful in small-scale or resource-constrained environments 

because they combine interpretability, computational economy, and predictive capabilities for fault 

monitoring in SCADA-based systems (Yimam et al., 2025; see also Gigoni et al., 2019 for a large-

scale PdM implementation). 

Despite these achievements, the literature suggests that there are still significant barriers to the 

actual application of machine learning (ML) in vertical-axis wind turbines. The non-stationary nature 

of VAWT data, which exhibit cyclic torque and asymmetric aerodynamic loading, affects both model 

training and real-time reliability (Pedro & Gonzalo, 2021; Ng & Lim, 2022). Deep-learning approaches 

have significant temporal modelling skills, but they require large amounts of data and sophisticated 

hardware, limiting their use to small turbines. Lightweight, interpretable models that can learn quickly 

from small datasets remain the most promising for field-level monitoring.  

Researchers continually highlight the importance of open, standardized datasets in accelerating 

development and promoting reproducibility. Studies also highlight the possibility of hybrid physical-

data models that incorporate mechanical and aerodynamic knowledge into ML frameworks, hence 

enhancing generalization and fault explainability (Allal et al., 2024; Wang et al., 2025). Recent 

research proposes that explainable AI techniques, such as feature attribution approaches, can close 

the gap between high-performance models and operator trust by giving clear reasoning for anomaly 

detections.  

In conclusion, the literature demonstrates a strong need for research into interpretable, data-efficient 

ML frameworks specifically designed for small VAWTs. Future systems can provide scalable, 

explainable, and real-time diagnostic solutions for distributed renewable energy networks by 

overcoming data quality, transferability, and transparency concerns. Building on these findings, the 

following chapter describes the experimental and methodological framework used in this 

investigation of the VAWT-X turbine. 
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CHAPTER 3: METHODS 

3.1 System Description 

3.1.1 Overview of the VAWT-X Platform 

The research was conducted on the VAWT-X vertical-axis wind turbine (VAWT) at Flinders 

University's Renewable Energy Test Facility in Adelaide, South Australia.  The turbine provides a 

controlled environment for conducting data-driven fault analysis and anomaly detection research. 

Unlike traditional horizontal-axis turbines, VAWTs run omnidirectionally and have distinct torque and 

vibration patterns, making defect detection difficult (Pedro & Gonzalo 2021).  

The VAWT-X system included an integrated sensor suite capable of monitoring mechanical, 

aerodynamic, and electrical performance characteristics. The variables measured were rotational 

speed (RPM), torque, current, voltage, power output, and triaxial vibration. Each signal was routed 

to a local data acquisition workstation via a BK8601 interface module, which translated sensor 

readings to digital format for processing.  Sampling frequencies varied between 1 and 10 Hz 

depending on the signal type, in accordance with conventional settings in small-scale turbine testing 

(Chen et al. 2020; Yimam et al. 2025).  

The turbine's control system supported both steady-state and fault simulations, allowing for the 

creation of labelled datasets.  Each experimental session was intended to collect representative data 

for both the baseline (normal) and induced-fault situations. 

 

Figure 3.1: VAWT-X Wind Turbine Station - Turbine and Local Computer in shot. 



 

10 

3.2 Experimental Setup 

3.2.1 Location, Timing, and Assumptions 

All experimental trials on the VAWT-X turbine were carried out at Flinders University in September 

and October of 2025. It was assumed that the turbine's mechanical and electrical components were 

operational throughout baseline sessions, and that any anomalies introduced were indicative of real-

world fault behaviour. 

3.2.2 Experimental Design 

The experiments were divided into two primary phases: 

Phase 1 Offline Evaluation: controlled data collection and model training using baseline and 

induced-fault datasets. 

Phase 2 Real-Time Deployment: live data streaming, model inference, and alert logging via MQTT. 

Each trial lasted between ~12 minutes depending on the fault condition. Fault scenarios included: 

• Electrical Fault: simulated short-circuit and unbalanced current load. 

• Aerodynamic Disturbance: partial blade obstruction and wind-flow interference. 

• Vibration Fault: artificial imbalance introduced via calibrated mass offset. 

• Power Deficit: induced through load reduction on the turbine output. 

• RPM Sensor Fault: simulated sensor dropout or drift. 

 

Figure 3.2: Example of induced anomaly during test - aerodynamic disturbance using bubble wrap 

on turbine blade. 
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3.2.3 Equipment Calibration and Testing 

All sensors were calibrated in accordance with manufacturer specifications by the on-campus turbine 

engineer responsible for the maintenance of the VAWT-X system. Data collection scripts were then 

executed in Python (v3.10) using the pandas, NumPy, and matplotlib libraries to test and acquire the 

appropriate datasets required for the project. 

 

3.3 Data Acquisition 

3.3.1 Data Collection Protocol 

Data collection followed a consistent technique throughout all experimental sessions. The turbine 

was initially run at baseline circumstances for a couple minutes to establish steady-state behaviour. 

Manually created defects were then sustained for predetermined periods of time until normal 

operation resumed.  Each session created a time-series dataset with synchronized readings from all 

sensors.  

The data was saved in comma-separated values (CSV) format with timestamped entries. Overall, 

11 test sets were recorded, with 4 baseline datasets at varying windspeeds, as well as 7 anomaly 

induced sets. All Data Acquisition and testing notes can be found in Appendix 6: 

 

Figure 3.3: The 11 Collected Test Data Sets, including 4 baseline sets (1-4) as well as 7 anomalous 

sets (5-11) 



 

12 

 

Figure 3.4: CSV Snapshot of data fields in test set (Test 1 – Baseline Low); 

3.3.2 Pre-Processing and Feature Extraction 

Raw data underwent a standardized pre-processing phase.  A 60-sample rolling window was used 

to calculate local means and standard deviations for all signals, smoothing out high-frequency noise 

while maintaining operational patterns (Jamil et al. 2025).    

Each variable was standardized to a z-score, which was calculated as: 

𝑧 = 𝑥 − 𝜇𝜎𝑧  =
𝑥  −  𝜇

𝜎𝑧
= 𝜎𝑥 − 𝜇   

where x represents the observed signal, μ the baseline mean, and σ the baseline standard deviation. 

This transformation enabled models to detect departures from normal conditions, as shown in 

previous turbine fault detection investigations (Wang et al. 2025; Yimam et al. 2025).  

To improve the system's ability to detect mechanical imbalance, a Random Forest regressor was 

trained using baseline data to predict predicted vibration magnitudes based on contextual factors 

such as wind speed, torque, and power. The residual-based vibration function detects minor 

variations indicating underlying degradation. While the current approach employs a data-driven 

residual model, comparable concepts for tracking latent degradation progression have been 

formalized in dependability models such as the Latent State Hazard framework (Moghaddass & 

Rudin, 2015). 

3.3.3 Data Cleaning and Integrity Checks 

Data quality checks were performed prior to model training. Missing data produced by brief sensor 

interruptions were linearly interpolated when the intervals were less than five consecutive samples. 

Longer gaps were excluded to avoid distortion, outliers higher than three standard deviations from 
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the baseline mean were capped. The final collection included thousands of tagged feature vectors, 

each representing a snapshot of turbine state. The dataset was separated over 70% training and 

30% validation, ensuring class balance across baseline and fault situations.  

 

3.4 Data Analysis 

3.4.1 Model Development 

Machine learning was utilized to identify each time frame as "normal" or "faulted." Five separate 

Logistic Regression classifiers were created, one for each type of fault. Logistic Regression was 

chosen for its interpretability and efficiency on tiny datasets, which is consistent with findings from 

comparative ML assessments that show lightweight models are competitive for fault classification 

(Mohapatro et al., 2025). 

For the vibration features, the Random Forest regressor was employed as a feature generator rather 

than a classifier, resulting in the previously stated residual-based input. This hybrid strategy is 

consistent with current ML frameworks that combine coarse fault detection with subsequent fault 

type identification, improving interpretability and diagnostic accuracy (Zaid Allal et al., 2024; Jamil et 

al., 2025). 

3.4.2 Model Training and Validation 

Training was carried out on a local workstation using Python and open-source libraries. Models were 

validated with five-fold cross-validation, which provided a reliable estimate of generalization 

performance. Precision, recall, and F1 score were among the evaluation indicators used. 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   

Recall  =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 =
2 ⋅ (Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙)

Pr𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

These metrics allowed quantitative comparisons between detectors and were chosen for their 

prevalence in turbine fault detection studies (Yimam et al. 2025; Zhang, Hu, & Yang 2022). 

Performance findings were visualized using ROC curves and confusion matrices, which provided 

information about classification thresholds and misclassification rates.  

3.4.3 Threshold Calibration and Alert Logic 

The continuous model probability outputs were transformed into binary warnings with static 

thresholds. Thresholds were defined using 95th percentile probabilities from the baseline dataset. A 
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3-of-5 hysteresis filter was used, and three consecutive samples above the threshold resulted in a 

continuous warning. This logic enhanced alert stability while reducing transient noise.  

During live deployment, the Power Deficit model threshold was manually changed from 0.93 to 0.85 

to improve sensitivity in changeable wind situations. This real-time calibration demonstrated the 

viability of adaptive thresholding; a strategy found in other turbine monitoring systems to improve 

recall (Zaid Allal et al. 2024; Wang et al. 2025).  

 

3.5 Real-Time Deployment 

3.5.1 System Integration via MQTT 

Following validation, the models were deployed via a MQTT-based pipeline for real-time anomaly 

detection.  The system subscribed to real-time topics like Sensors/rpm, Sensors/torque, 

Sensors/current, and Sensors/power.  Each incoming message was processed and converted into 

feature values like those used during training, as well as predictions were computed locally on the 

workstation every second.   Each detector's probability, threshold, and alert statuses were included 

in the output. The results were appended to a CSV log file and shown using an accompanying 

dashboard.  

The pipeline successfully maintained a consistent throughput of roughly 1 Hz, demonstrating its 

applicability for real-time monitoring. Although typographical and feature alignment issues prevented 

all models from running simultaneously, the Power Deficit detector generated consistent and relevant 

alerts in response to actual power dips. 
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Figure 3.5: Real-time MQTT inference and alert pipeline architecture: 

3.5.2 Data Logging and Post-Processing 

Every real-time inference result was timestamped and logged.  Post-run scripts combined alert 

frequency, duration, and probability distributions. This logging enabled the quantitative validation of 

live performance as well as the correlation of model output to measured turbine activity.  

A visual check of the live Power Deficit Probability Trace validated the system's capacity to track 

power variations in real time. Other detectors remained dormant owing to configuration mismatches 

but were kept for future integration. 

 

3.6 Planning Items 

3.6.1 Risk Assessments 

Risk assessments were carried out for both safety and project performance.  Physical hazards 

included moving turbine blades, electrical exposure, and vibration threats. The table below shows 

each risk and its mitigating options. 

Table 3.1: Risk Assessment Table (Refer to risk assessment matrix in Appendix 4) 

Risk 
ID 

Risk Type Hazard 
Description 

Mitigation Strategy Impact Probability Risk 
Score 

R1 Rotational 
Hazard 

Both turbines 
presented 
potential 
entanglement or 
contact risks. 

A safe-distance 
strategy was 
implemented during 
the operation of the 
wind turbine. 

High Low Medium 

R2 Electrical Hazard Risk of electrical 
shock from faulty 
cabling or open 
terminals. 

All equipment was 
checked before use, 
lab protocols 
followed. 

High Low Medium 

R3 Thermal Hazard In thermal stress 
trials, directed 
heat could 
cause burns or 
fire risk. 

All tests were 
supervised, and 
thermal sources 
were kept at safe 
distances. 

Medium Medium Medium 

R4 Sensor Failure Sensor failure or 
data corruption 

Redundant backups, 
dual logging to SSD 
+ cloud 

High Medium High 

R5 Data 
inconsistencies 

Inconsistent 
data availability 

Optimise code to 
omit inconsistencies 

Medium Medium Medium 

R6 Model Overfitting Model overfitting 
occurs when 
training on the 
gathered data 

Cross-validation, 
dropout layers, early 
stopping, re-asses 
reconfiguration 

High Medium High 

R7 Project Delays Integration dela Early testing with 
mock data, 
staggered 
deployment 

Medium Low Low 
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R8 Computational 
Resource 
Limitation 

Real-time 
models 
deployed may 
exceed 
processing 
capacity. 

Optimise models, re-
asses model usage 
and project goals. 

High Low Medium 

R9 Data Labelling 
Ambiguity 

Fault labels from 
lab trials could 
be misaligned 
with sensor logs, 
leading to poor 
model 
performance. 

Synchronize manual 
logs with 
timestamps; use 
written notes during 
trials for cross-
verification. 

Medium Low Low 

R10 AI Model 
Accuracy 

AI Model 
accuracy is poor, 
leading to low 
quality anomaly 
detection 

Implement Multiple 
Models 

Medium Low Low 

R11 Time Constraints Time limit is 
exceeded, with 
an incomplete 
product 

Focus on MVP 
(Minimal Viable 
Product) 

Medium Medium Medium 

 

3.6.2 Project Timeline 

The project was divided into two university semesters, with key milestones and deliverables timed 

to correspond with hardware availability, assessment dates, and software development cycles. The 

Gantt chart in Appendix 5 visualizes the initial project chronology, whereas Figure3.6 Below 

demonstrates the updated one. The project kicked off in Semester 1 with a literature review and 

proposal session, followed by system setup and familiarization. Based on turbine sensor installation, 

data stream generation, visualisation in XMPro, and data collecting would take place at the start of 

semester 2. The integration of artificial intelligence and predictive maintenance (PdM) models would 

continue in Semester 2 until the scope changed due to limited data and turbine installations, shifting 

the project's focus to anomaly detection. This necessitated further investigation and planning. 

Assessments, including results, thesis and viva, were set for the end of the semester. 
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Figure 3.6:  Project Timeline Gantt Chart (Updated) 

 

3.6.3 Ethical and Sustainability Considerations 

Because there was no personal or confidential data involved in the study, ethical approval was 

unnecessary. From a sustainability standpoint, the study corresponds with renewable energy 

optimisation objectives by prolonging turbine life and lowering maintenance-related resource use. 

 

3.7 Sources of Experimental Error 

Sensor noise was the most common source of inaccuracy. To counteract these effects, rolling 

averages and hysteresis filters were used, and repeated trials were carried out to assure 

representative outcomes.  

Human error during configuration and deployment, particularly typographical errors in topic names, 

contributed to the model's inactivity.  To avoid this from happening again, future versions of the 

system will incorporate schema verification scripts. 

 

3.8 Chapter Summary 

This chapter describes the experimental methodologies, analytical methods, and deployment 

processes utilized to create the VAWT-X anomaly detection framework. The study integrated 

interpretable Logistic Regression models with residual feature improvement, trained and validated 

using controlled trials, then deployed over MQTT for real-time inference. The system assured 

reproducibility by providing detailed documentation of equipment, calibration, and software tools.  
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Although data and time constraints limited full multi-model deployment, the implemented technique 

demonstrated technological capability and laid the groundwork for future extension into a complete 

digital twin system.  

 

CHAPTER 4: RESULTS 

4.1 Experimental Setup and System Description 

The VAWT-X anomaly detection framework was tested in two phases: offline using controlled 

baseline and induced-fault datasets, and real-time deployment using live data streaming from the 

turbine via MQTT.  The test sought to demonstrate the framework's ability to detect operational 

problems and disturbances in small-scale vertical-axis wind turbines (VAWTs) using 

understandable, low-complexity machine learning models.  

The system architecture adhered to the design given in Chapter 3.  Sensor data were collected from 

the VAWT-X turbine at Flinders University's renewable energy plant, and included measurements of 

wind speed, rotational speed, torque, power, current, and vibration. Data were pre-processed with a 

rolling 60-sample average window to smooth noise and capture short-term trends before being 

standardized using z-score normalization. In addition to these foundation features, a Random Forest 

regression model was trained to predict expected vibration levels, allowing the computation of 

residual vibration errors (z_vib), a sensitive indicator of mechanical imbalance.  These processed 

features were then fed into five Logistic Regression (LR) classifiers, each of which corresponded to 

a different fault category: electrical, aerodynamic, vibration, power shortfall, and RPM sensor faults.  

For both offline and live testing, fault probabilities were translated into binary alarm signals using 

static quantile-based thresholds. Each detector used a three-of-five hysteresis rule, which required 

three consecutive samples above the threshold to produce a confirmed alarm.  This strategy lowered 

transient noise while improving alert reliability.  

Offline evaluation included training and validation on structured datasets under normal and fault 

circumstances. The data was divided into windows for model training (70%), and validation (30%). 

For the live testing, the models were distributed using the MQTT pipeline, which subscribed to real-

time turbine topics. The deployment code computed rolling features on the fly, using the same z-

score scaling as offline data, and output results to a CSV log file. The system ran constantly at a 

sample rate of about 1 Hz, providing near-real-time inference with low processing overhead.  
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Figure 4.1: Overview of the anomaly detection framework and data processing workflow. 

4.2 Presentation and Analysis of Results 

4.2.1 Offline Evaluation 

Before live deployment, the proposed models were tested offline to ensure that they could correctly 

discern between healthy and faulty operating states. The viz_by_group_thresholds script produced 

figures displaying each detector's probability traces under both baseline and induced fault 

circumstances. These visualizations, combined with the quantitative results, provided a thorough 

knowledge of each detector's strengths and limits. 

From a purely quantitative viewpoint, across all models, the Power Deficit detector provided the most 

consistent and reliable results. Its recall of 0.714 and F1 score of 0.833 suggest a balanced detection 

capability, accurately identifying periods of lower power generation caused by controlled load 

disturbances. The Aerodynamic Disturbance detector had the best overall performance, with a recall 

of 0.857 and an F1 score of 0.923, indicating good reactivity to airflow interruptions and a low false 

alarm rate. The RPM Sensor Fault detector has comparable reliability to the Power Deficit model (F1 

= 0.833), reliably identifying sensor drift events but missing tiny fluctuations that remained below the 

static threshold. 

The electrical fault detector performed moderately, with a recall of 0.571 and an F1 score of 0.727. 

It correctly detected major current abnormalities but sometimes failed to respond to lower-amplitude 

fluctuations. Finally, the Vibration Health detector had the lowest recall (0.429) and F1 score (0.600), 

indicating that the residual vibration feature needed more scaling or recalibration to increase 

reactivity to mild mechanical imbalance. 
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It is vital to highlight that all detectors have flawless precision (1.00). This result stems from the way 

the evaluation framework was designed, with each fault segment evaluated as a positive case for 

the accompanying model. As a result, all detections in fault-labelled data were counted as true 

positives, with no false positives achievable under these test conditions. Precision values are likely 

to vary in a real-world operating situation, where detectors only trigger for specified anomaly types. 

Thus, the flawless precision seen here is mostly due to the absence of erroneous triggers in the 

controlled dataset, rather than general fault-free performance. 

Table 4.1: Summary of mean precision, recall, and F1 scores across all detectors. 

Detector Precision Recall F1 Score Interpretation 

Power Deficit 1.00 0.714 0.833 High overall reliability; accurately 

detected load imbalance with 

consistent threshold crossings. 

Electrical Fault 1.00 0.571 0.727 Detected major current irregularities 

but missed lower-intensity fault 

periods. 

Aerodynamic 

Disturbance 

1.00 0.857 0.923 Strong performance; effectively 

identified airflow disruptions with 

minimal false triggers. 

RPM Sensor 

Fault 

1.00 0.714 0.833 Reliable detection when sensor drift 

occurred; recall could improve with 

lower thresholds. 

Vibration 

Health 

1.00 0.429 0.600 Least sensitive model; residual 

feature scaling reduced 

responsiveness to minor 

imbalance. 

 

Visual analysis of the charts assist these quantitative findings. 

The Aerodynamic Disturbance detector (Figures 4.3 and 4.4) had probabilities that regularly 

exceeded the alert level in both baseline and fault segments, indicating that the model was highly 

sensitive to transient turbulence. Although this sensitivity enables it to detect actual aerodynamic 

interruptions, the high number of warnings during normal operation indicates that its threshold or 

decision boundary should be adjusted, or additional feature tuning done, to reduce false triggers. 

The Electrical Fault Detector (Figures 4.5 and 4.6) seemed to be the most consistent model visually. 

Stable sensor data allowed for a clear delineation between baseline and fault occurrences, and the 

minimal number of alarms during baseline operation (one incidence) appears appropriate and 
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accurate. Under induced fault conditions, alarms were triggered at the appropriate intervals, 

demonstrating that the model behaved consistently when data quality was high. 

The Power Deficit detector (Figures 4.7 and 4.8) showed consistent early spikes as the turbine 

ascended to a stable operating speed. Once in steady state, the model occasionally delivered 

accurate defect detections in response to induced load variations. This pattern implies that initial 

startup transients should be filtered or omitted from evaluation windows to avoid misclassifying 

typical ramp-up behaviour as errors. 

The RPM Sensor Fault detector (Figures 4.9 and 4.10) showed significant variance in anticipated 

probability, fluctuating between low and high levels. Despite this volatility, the detector properly 

identified sensor anomalies during the fault runs, and the number of alerts generated appeared 

reasonable for the fault size used. Some smoothing or threshold change may help to stabilize its 

answers in subsequent iterations. 

The Vibration Health detector (Figures 4.11 and 4.12) produced alert patterns that were visually like 

true mechanical disturbances. Both baseline and fault traces were decent, but their great variability 

made them difficult to read at a glance. The warnings within the fault segments corresponded to 

produced imbalance occurrences, demonstrating that the detector was functioning properly, even 

though the residual vibration feature is still sensitive to noise. 

 

Figure 4.3: Aerodynamic Disturbance - Baseline probability trace.  
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Figure 4.4: Aerodynamic Disturbance - Fault probability trace.  

Figure 4.5: Electrical Fault - Baseline probability trace.  

Figure 4.6: Electrical Fault - Fault probability trace 

Figure 4.7: Power Deficit - Baseline probability trace 
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Figure 4.8: Power Deficit - Fault probability trace. 

Figure 4.9: RPM Sensor Fault - Baseline probability trace. 

Figure 4.10: RPM Sensor Fault - Fault probability trace. 

Figure 4.11: Vibration Health - Baseline probability trace 
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Figure 4.12: Vibration Health - Fault probability trace. 

Overall, the offline evaluation shows that the anomaly detection system can correctly categorize 

multiple anomaly type. These findings corroborate the framework's architecture and indicate that 

Logistic Regression models, along with residual feature engineering, provide an interpretable and 

computationally economical solution for wind turbine problem identification. 

 

4.2.2 Real-Time Deployment and Results Analysis 

Following a relatively complete offline evaluation, the system was deployed live on the VAWT-X 

turbine via the MQTT data stream. The real-time test was designed to evaluate the models' 

operational dependability under continuous data flow and demonstrate their capacity to do inference 

at the edge without cloud help.  

During the live deployment, all five detectors were operational, logging outputs every second.  

However, only the Power Deficit Detector produced relevant and understandable alerts. A total of 37 

unique Power Deficit alert incidents were collected, each representing recognizable decreases in 

power production caused by load fluctuations or transient aerodynamic effects.  This behaviour 

demonstrated that the system could detect true performance issues in real time.  

The remaining detectors yielded either continuous zero probability or unreasonably low values (on 

the order of 1e−22), indicating that the models were getting incorrect or missing input data. A post-

trial investigation found various possible explanations for this conduct. First, a typographical issue in 

the live deployment code's subject configuration (Sesnors/power rather than Sensors/power) 

prohibited the power feature from being properly populated.   This issue had a direct impact on the 

Electrical, Aerodynamic, and Power Deficit detectors, all of which rely on power and current features. 

Second, differences between the trained models' feature lists and the live system's generated feature 

columns resulted in several features defaulting to zero during runtime. This mismatch resulted in 

constant or near-constant input vectors, and so flat probability outputs.  

Further investigation of the real-time log revealed that the z-score scaling values calculated from 

offline data were not totally suitable for live settings.  The mean and standard deviations in 
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resid_stats.json resulted in exceptionally low z-scores in streaming data, further compressing model 

answers.  Finally, the Random Forest regressor calculated residual vibration values necessitated 

various contextual features that were occasionally missing from the live stream, resulting in a 

practically static z_vib feature and persistent, useless vibration notifications.  

Despite these problems, the Power Deficit detector performed consistently because it's essential 

features: wind speed, RPM, torque, and power, were generally present and accurately aligned. The 

probability trace showed periodic peaks that corresponded to actual changes in turbine load.  The 

three sample-level alerts in the CSV represented the raw count of times the detector's probability 

exceeded its threshold, but the 37 separate alert episodes indicated fault periods clustered by 

hysteresis logic.  

 

 Figure 4.14: Example of live CSV log showing Power deficit anomaly being detected (note the 

hysteresis requiring 3 consecutive frames of anomaly to increment) 

 

 Table 4.2: Summary of real-time detector performance. 

Detector Distinct 

Episodes 

Best Understanding as to 

why 

Power Deficit 37 Valid alerts corresponding to 

real power drops 

Electrical Fault 0 Flat probabilities due to feature 

omission 

Aerodynamic 

Disturbance 

0 No valid inputs, constant zero 

output 

Vibration Health 0  Potential scaling mismatch 

RPM Sensor Fault 0 Inactive during run, likely 

conservative threshold 

*Power Deficit Column 
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Although only one model was able to be successfully executed, the live deployment still yielded 

some positive outcomes. First, the MQTT-based pipeline functioned continuously with no data loss, 

demonstrating that the real-time architecture is technically feasible. The inference cycle time per 

message stayed below 200 milliseconds, resulting in near-instant alert production. Second, the 

Power Deficit Detector's real-world performance verified the idea of edge-deployable predictive 

maintenance. The detector's continuous alignment with quantifiable load disturbances revealed the 

feasibility of utilizing basic, understandable models for autonomous fault detection.  

However, the test demonstrated the vulnerability of machine learning systems to data integrity and 

schema consistency. Missing or mislabelled sensor channels passed through the feature pipeline, 

can have severe effects on the effectiveness and outcome of the models. These findings emphasize 

the need for better input validation, and feature verification in future implementations.  

 

4.3 Summary of Findings from Results 

The combined offline and real-time evaluations provide a complete picture of the VAWT-X anomaly 

detection framework's performance and operational preparedness. Offline testing demonstrated that 

the developed Logistic Regression models, which are supported by residual vibration data, can 

accurately classify and interpret diverse turbine fault states. The Power Deficit Detector continuously 

displayed the highest accuracy and interpretability, making it the most mature and deployable 

component. The electrical and aerodynamic detectors were also reliable, although the RPM Sensor 

and Vibration Health detectors require additional calibration to reach strong sensitivity.  

The real-time deployment confirmed the functional architecture of the MQTT-based inference 

system, demonstrating its ability to perform end-to-end anomaly detection autonomously and with 

low latency. Although only the Power Deficit detector generated accurate alarms throughout the live 

trial, this result demonstrates that the framework can perform meaningful inference in streaming 

situations. The inactive detectors revealed implementation-level issues rather than conceptual flaws. 

Misnamed MQTT topics, irregular feature alignment, and mis-scaled z-score parameters all provide 

useful refining insights.  

In summary, the research met its primary design goals by developing an operational, explainable, 

and lightweight anomaly detection framework for small-scale turbines. The offline evaluation 

confirmed the analytical accuracy of the technique, whilst the live deployment revealed practical 

practicality. These findings help the larger goal of creating scalable, interpretable machine learning 

algorithms for predictive maintenance in distributed renewable energy assets.  
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CHAPTER 5: DISCUSSION 

5.1 Overview 

This chapter discusses the results of both the offline evaluation and live deployment of the anomaly 

detection system for the VAWT-X turbine. It evaluates the findings reported in Chapter 4 and links 

them to the methodology's research goals and objectives. Talking points also delves into the actual 

issues that arose during system development, such as data constraints, feature alignment, and 

deployment complexity. Finally, it considers how these findings relate to the larger aims of predictive 

maintenance and digital twin integration, as well as paths for further improvement. 

 

5.2 Interpretation of Offline Evaluation 

The offline study revealed that machine-learning models can accurately categorize the operational 

stages of the VAWT-X turbine with a small dataset. All detectors achieved perfect accuracy (1.00), 

which means that no false positives were recorded inside the specified fault segments. Precision 

levels are predicted to vary in a real-world operational setting since each detector responds 

specifically to a specific sort of abnormality. The observed precision thus emphasizes the lack of 

false triggers under controlled settings, rather than ubiquitous fault-free performance. 

The variation in recall and F1 scores demonstrates the detectors' different sensitivity to fault 

magnitude and signal quality. The Aerodynamic Disturbance detector has the greatest F1 score 

(0.923) and recall (0.857), indicating significant reactivity to airflow interruptions while remaining 

stable in baseline conditions. The Power Deficit and RPM Sensor detectors both demonstrated 

balanced performance (F1 = 0.833, recall = 0.714), successfully identifying load differences and 

rotational anomalies in most test instances. The Electrical Fault Detector received an F1 score of 

0.727, missing certain low-intensity current anomalies while staying accurate for larger electrical 

imbalances. The Vibration Health detector was the least sensitive (F1 = 0.600, recall = 0.429), 

indicating that under-scaled residual features and cautious threshold settings reduced response to 

mild mechanical imbalance. 

This data shows that the framework's Logistic Regression models accurately classified turbine 

states, with few false alarms and stable probability outputs. However, the variety of recall values 

underlines the importance of threshold tweaking in balancing detection sensitivity with stability. 

Future versions should use adaptive thresholding or cross-validated quantile calibration to improve 

recall while maintaining interpretability. 
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5.3 Interpretation of Real-Time Deployment 

The live deployment allowed us to see how the anomaly detection models performed under 

streaming data situations.  The Power Deficit Detector remained completely operational and 

displayed a clear response to live changes in turbine load.  A total of 37 unique warning occurrences 

were detected, each associated with substantial reductions in generated power. This constant 

behaviour shows the model's ability to generalize from offline data to real-world operating settings.  

The remaining four detectors (Electrical, Aerodynamic, Vibration, and RPM Sensor) provided zero 

or near-zero probability values throughout the test.  A subsequent examination of the real-time log 

and MQTT settings revealed various significant issues. A typographical issue in the MQTT topic list 

prevented legitimate power data from reaching the inference step, directly harming many models. 

Furthermore, feature alignment inconsistencies between the live pipeline and saved model 

configurations caused NaN values to be replaced with zeros, resulting in flat input vectors and static 

forecasts. The z-score scaling choices also failed to capture live data variance, reducing probability 

to an inadequate range.  

Despite these restrictions, the real-time test showed that the system architecture was reliable. The 

MQTT pipeline ran continuously, processed data in real time with low latency, and recorded all 

inference findings for post-analysis. The successful operation of the Power Deficit Detector in this 

setting demonstrated that the underlying model architecture was technically sound.  These findings 

show that the fundamental problem is not in the machine learning algorithm itself, but in guaranteeing 

reliable data handling, topic setting, and scaling consistency in deployment scenarios. 

 

5.4 Reflections on Project Scope and Constraints 

The expansion of the project's scope, as well as the practical limits encountered during its 

implementation, had a substantial impact on the study's ultimate results.  The initial project concept 

centred significantly on the creation of a digital twin system for the VAWT-X turbine, combining live 

operational data with predictive models within an XMPro data stream and front-end dashboard. 

However, early in the project, it became clear that the turbine's readiness and data availability would 

impede progress toward that target within the placement timeline.  

As a result, the project's focus switched to developing the fundamental predictive maintenance 

framework, which could then be integrated into a digital twin architecture, this shift necessitated a 

significant overhaul of the methodology and accompanying study documentation. Much of the 

original literature review, which focused on digital twin frameworks and high-level integration tactics, 

needed to be modified to match the new study's more data-driven, model-focused approach. The 

refocus allowed for more technical study of anomaly detection approaches, model deployment, and 



 

29 

feature engineering, but it also meant that complete integration with the digital twin platform was 

postponed for later development.  

Time restrictions also played an important influence. The process of installing and testing the 

physical turbine, calibrating sensors, and obtaining useable data took up a significant portion of the 

allotted project time. This limited the time available for iterative model refining, live data pipeline 

debugging, and threshold parameter optimization. As a result, only one model, that being the Power 

Deficit Detector, was fully validated in live situations, while the others remained partially 

implemented. With more time, these concerns may have been systematically addressed using input 

schema validation, dynamic threshold adaption, and extended cross-validation.  

Nonetheless, the work made within the deadline indicated both technical capacity and proof of 

concept.  The system's successful partial deployment demonstrates that the technique is viable and 

ready for future development once more data becomes available. 

 

5.5 Lessons Learned and Technical Implications 

The process of creating and installing this system provides some practical insights into using 

machine learning to small-scale renewable energy systems.  The most important lesson involves 

data quality and consistency.  Even extremely accurate models may fail if live input streams depart 

from the expected feature pattern.  Future work should incorporate automated schema validation 

techniques that detect missing or renamed MQTT topics and warn problems before model inference.  

Another important observation is threshold and scaling adaptation. The static thresholds utilized in 

this research were adequate for offline validation, however they were less adaptable in dynamic 

settings.  Adaptive thresholding, which involves recalculating thresholds depending on recent data 

windows, has the potential to greatly improve sensitivity and reduce false negatives. Similarly, 

changing z-score scaling parameters while in live operation would keep the models calibrated to 

real-time sensor variability.  

From a system architecture standpoint, the deployment demonstrated that lightweight, interpretable 

models may function within an edge computing framework.  The entire pipeline operated on local 

hardware without external servers, proving the predictive maintenance for tiny turbines can be 

achieved without the processing overhead associated with deep learning methods. This is especially 

significant in distributed renewable systems where connectivity and computational resources may 

be restricted.  

Finally, the findings emphasize the need of explainable AI in operational environments. The ability 

to understand each model's output using linear coefficients, feature importance, and probability 
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thresholds boosts user confidence and makes debugging easier. The trade-off between 

interpretability and performance proved acceptable in this case, as the models provided actionable 

insights while remaining transparent. 

 

5.6 Future Work 

Future development of the VAWT-X anomaly detection system should focus on three main areas: 

1. Full Multi-Model Integration: Completing and harmonising the deployment of all five 

classifiers within the live MQTT framework. This includes correcting topic schemas, aligning 

feature orders, and validating statistical parameters. 

2. Digital Twin Integration: Building on the initial concept, the anomaly detection framework 

should be embedded within the XMPro digital twin environment. This would enable real-

time visualisation of model outputs alongside operational turbine metrics and provide an 

interactive platform for maintenance decision support. 

3. Expanded Dataset and Adaptive Learning: Collecting longer-term operational data will 

allow the models to be retrained under varied environmental conditions. Integrating online 

learning or incremental model updates could further enhance predictive performance. 

Furthermore, future iterations should include automated recalibration procedures for z-score scaling 

and threshold adjustment, allowing the system to self-correct as environmental and turbine 

conditions change. Once these improvements are implemented, the platform could be used as a 

prototype for distributed predictive maintenance solutions across various small-scale renewable 

assets. 

 

5.7 Chapter Summary 

This chapter has gone over the analytical and operational findings of the VAWT-X anomaly detection 

architecture. Offline evaluations demonstrated that the models can reliably classify numerous fault 

types while remaining interpretable and computationally efficient. The real-time deployment 

established proof-of-concept success by establishing continuous live inference and verifying the 

system's ability to operate autonomously at the edge. Although only the Power Deficit model worked 

as expected during the live test, its performance verified the overall architecture and confirmed that 

the model design, data flow, and inference logic were all fundamentally correct.  

The lecture also touched on the practical issues that influenced the project, such as time limits, data 

limitations, and a shift in emphasis from full digital twin integration to predictive maintenance 

modelling. These factors necessitated extensive restructuring but ultimately resulted in a technically 
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focused and clearly functioning product. The findings on data integrity, adaptive calibration, and 

system explainability lay a solid framework for future study and development of intelligent 

maintenance systems for renewable energy infrastructure. 

 

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

The goal of this study was to develop, build, and test an interpretable anomaly detection framework 

for the VAWT-X vertical-axis wind turbine.  The initiative aims to lay the groundwork for predictive 

maintenance and eventual digital twin integration in small-scale renewable energy systems. Despite 

changing project limitations, the final framework met its design objectives by proving efficient offline 

classification of turbine problems and dependable real-time operation via a MQTT-based 

deployment.  

The offline evaluation revealed that lightweight Logistic Regression models, with residual vibration 

characteristics produced from a Random Forest regressor, can successfully detect numerous fault 

categories on a little dataset.  The Power Deficit model performed the best overall, with excellent 

precision and recall, while the Electrical and Aerodynamic detectors were moderately accurate. 

Although the Vibration and RPM Sensor models were less sensitive, their performance justified the 

overall notion of employing explainable models for turbine health monitoring.  These findings 

provided the analytical foundation required for moving to live deployment.  

The real-time trial proved the system's technological feasibility in streaming settings. The Power 

Deficit detector responded accurately to genuine load changes, generating thirty-seven separate 

alert occurrences that corresponded to observed turbine behaviour. The other detectors remained 

inactive due to data alignment difficulties, emphasizing the vital significance of comprehensive 

schema verification. Nonetheless, the implementation showed steady inference at one-second 

intervals, low computing delay, and accurate alarm logging, demonstrating that autonomous, edge-

based predictive maintenance is possible with minimum infrastructure.  

An important effect of this initiative was an adaptive adjustment in research direction. Originally 

planned as a digital twin and predictive maintenance system, the project was re-scoped to focus on 

laying the machine-learning groundwork for such integration.  This move, prompted by data 

restrictions and turbine readiness, necessitated a significant overhaul of the literature review, 

methodology, and results presentation. While the digital twin component is still in the works, the 

established framework acts as a useful building block for the greater goal. With more time and data, 

the other classifiers can be modified, thresholds dynamically adjusted, and model integration into 

the XMPro digital twin environment completed.  
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Overall, this effort shows that interpretable machine-learning algorithms can provide a dependable 

and scalable solution for early failure detection in distributed wind systems.  The findings provide 

practical insights into real-time data handling, feature engineering, and model deployment in small-

scale turbines. Future research should concentrate on harmonising the data flow, incorporating 

adaptive thresholding, and expanding the deployment across many turbines to enable continuous 

learning. In its current form, the framework proves the technical and conceptual feasibility of 

intelligent predictive maintenance while also laying the groundwork for extensive digital twin 

integration in the renewable energy sector. 
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APPENDICES 

Appendix 1: XMPro Demonstration Application Interface (Prior Scope) 

 

Appendix 2: XMPro Demonstration Data Stream (Prior Scope) 

 

Appendix 3: Gantt Chart (Actual) 

Appendix 4: Risk Assessment Matrix based on risk consequence and likelihood scoring. 



 

37 

 

Appendix 5.1: Project Timeline Gantt Chart (Initial) 

 

 

Appendix 6: All Testing Notes 

Appendix 6.1: Test 1-high wind base 
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Appendix 6.2: Test 2-mid wind base 

Picture was not taken. 

 

Appendix 6.3: Test 3-Low wind base  

 

  

  

Appendix 6.4: Test 4-variable wind base 

Picture was not taken. 

 

Appendix 6.5: Test 5-Balanced short circuit 
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Appendix 6.6: Test 6-Balanced open circuit 

Picture was not taken. 

 

Appendix 6.7: Test 7-Unbalanced open circuit  

 

  

  

  

Appendix 6.8: Test 8-Unbalanced short circuit (line to line short circuit) 
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Appendix 6.9: Test 9-Rpm sensor malfunction 

 

 

Appendix 6.10: Test 10-Disturbance in aerodynamic blade 
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Not -The bubble wrap fell in the middle of the experiment and the sensor readings can be to 

normal condition 

 

  

Appendix 6.11: Test 11-Weight imbalance (adding weight) 

Picture was not taken 

About 200g of weight was attached to one side of the turbine blade. 

 

Appendix 7: Project Source Code Structure 
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